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ABSTRACT 

Energy  relations  derived  for  a  lossless closed  uniform  and periodic 

structure  show  that   the  total  complex Poynting vector   Integrated over  the 

cross section  Is  Identically zero  for the case of an  arbitrary complex 

wave.    These  results  are  also applicable to open structurrs  provided 

certain conditions are satisfied.     The application of  these  results  in 

the   field  of   leaky wave antennas   is  discussed,     Two  illustrative examples, 

those of   the   sinusoidally modulated  reactance surface   and   the sheath helix, 

are worked out.     It   is shown that   although the slope of  the k-ß curve can 

no longer be  associated with the direction of net  power  flow,  the knowl- 

edge of  the  slope may still  be  helpful   in selecting certain modes  for 

representing   a given source. 
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I.     Introduction 

In  this paper we derive  the power and energy relations  for uniform 

and periodic waveguides supporting a wave with a complex propagation con- 

stant  in general.     The study was prompted  by the findings  in an earlier 

investigation  by the authors   ,   in which  it was  shown that  complex waves 

exist   in a   lossless   isotropic waveguide  possessing a  glide   reflection 

symmetry.     Here  the   term complex wave   implies a  propagation constant 

F = a +  jß,  with a   the attenuation constant  and 3  the phase constant, 

non-zero  in general. 

The  relations  appropriate  to closed  uniform waveguides  have previously 

2 
been derived by Chomey  .    However,   it   is  believed  that   the  generalized 

formulation presented  in this paper provides additional   insight   into the 

method of  approach. 

The authors have not  come across  the derivation of   similar  relations 

for periodic  structures,  or those applicable  to open guides,   uniform or 

periodic.     These  topics  are discussed  in  sections 3  and 4  of   this paper. 

The paper also presents calculated  power plots  for two open guides, 

the sinusoidally modulated   reactance  surface and  the sheath  helix.     These 

plots are discussed  and  some  insight  into the operation of  the open guides 

as antennas  is  provided. 

II.     Uniform Waveguide 

In this section we  shall  derive  some energy relations  in a  uniform 

2 
bidirectional  waveguide.  Chorney    was among  the first  to obtain the power 

and psuedo-energy  theorems for such a  structure.    His formulation starts 

with the  field  distribution in the waveguide corresponding  to a  short cir- 

cuit  termination at  a  reference plane,   say z = 0.    These field  expressions 
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The modal  electric  and  magnetic   fields   inside  a uniform waveguide  having 

an  arbitrary termination,   may be expressed as   follows: 

Et = Et   (x,y)      (e -  R e      I (2.2a) 

2 

are  then substituted  in a modified  form of complex Poynting's theorem,   which in 

turn leads to the desired  relationships.     Even  though the artifice of  a  short 

circuit  termination is used  to derive the power and energy  theorems,   the  end 

results  obtained are  for an  infinite waveguide.     Since the  final  result   is 

independent of the termination,   the motivation  for using a short-circuit 

termination is not very clear.     One of the purposes of this work  is  to  investi- 

gate  this question and  to see  if a satisfactory explanation  for the method 

could be provided. 

In  the  following,   Chorney's power and  pseudo-energy  theorems  are  rederived 

using an arbitrary termination  in the waveguide.     This approach clearly  explains 

the need  for working with  a  general  type of  field  expression in  the  formulation 

of  the  problem,   one which  is  a  superposition of  the  incident  as well  ab   the 

reflected  field.     The principal difference between   the present   formulation 

and  that of Chorney lies  in   the generalization of   the type of  the termination 

in  the waveguide. 

Consider a uniform bidirectional waveguide  filled with a lossless,   homo- 

geneous,   nondispersive,   and   in general anisotropic  medium,   having permit- 

tivity  and  permeability  tensors € and ji.     Figure  1   shows  such  a waveguide 

geometry.     The tensors  t  and  fi are hermitian  and  arc  shown  in  the   following 

equation: 



Ez = *z(x'y)  \e'  + R e / 

Ht = Ht(x,y) (e"rZ + R e^j 

H =fi(x,y)fe-rz-Rer^ 

(2.2b) 

(2.2c) 

(2.2d) 

jwt 
A harmonic time variation e   is implicit in the above equations.  Also, 

F is the propagation constant and is complex in general, i.e., F = a -f jß. 

The subscript "t" indicates a vector transverse to the z direction. Note 

that the field expressions contain both the incident and reflected terms. 

The reflection coefficient R is the description of the termination, referred 

to the plane at z = 0.  It is assumed that the termination reflects a single 

mode only, the one under consideration here. 

Apply the complex Poynting's theorem to a volume v enclosed by two 

cross-sectional surfaces S and S  (see Figure 1) and the waveguide walls. 

Since the tangential electric field is zero on the waveguide walls, one 

obtains 

X —* 
(Et x Ht) . z da - L —♦ 

(Et x Ht) . z da = 

jw [l ^ * " " i —   =* dV (2.3) 

Substitute (2.2) in (2.3) to obtain 
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where we have used the following definitions: 
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(2.5d) 

(2.be) 

(2.5f) 

(2.5B) 

(2.5h) 

Equation (2.4) is true for all values of R.  Thus one may equate the 

coefficients of R on both sides to obtain 

+2aa +2aa 
P(l - e   ) = J 2 („+ - u+) (1 - .   ) 

„„   iJ2P', *% (U- - U") (1 - e^2^) 
P(l - e    )  ß m   e 

(2.6a) 

(2.6b) 

Equating the real and imaginary parts of Equations (2.6) there follows: 

P1 (1 - e'2aa) = 0 (2.7a) 



Q    (1 _  e-2aa)  = ^ (U+ - U+)   (1 - e-2aa) (2.7b) 
i a      m        e 

p    d  . e-JZß«)  s w    (u- . y-j   (1 _ e-J2(3a) (2#7c) 
i p m        e 

Q1  (1  - e"J2,3a)   = 0 (2.7d) 

-Fz 
which are appropriate for the  forward wavns,   i.e.,   those with  the e 

variation.     Similar relations are readily obtained for the reflected waves. 

It  is   interesting to note  that the set of equations  (2.7)   are  independent 

of  the termination in the waveguide.    One might therefore question the 

necessity of  introducing the reflected wave in the  formulation of the problem. 

The answer  to this question is  found by retracing the  steps used to  derive 

(2.6) from  (2.4).     If we  let R equal to zero at the outset,   the information 

contained in  (2.6b)  will be  lost.     As will be evident   later,  both  (2.6a) 

and  (2.6b)   are necessary to derive  the complete energy relations in the 

general  case of a complex T.     It  should be  noted that  the set of equations 

(2.7) are valid for a general T.     They are therefore  applicable to all the 

three cases of  propagating,   evanescent,  or complex waves. 

The following explicit  relations may be readily obtained from (2.7): 

(a) Propagating Wave  (a = 0,   ß ^ 0): 

P,   = ^     (U~  - U") (2.8a) 1       ß m        e 

Q       =    0 (2.8b) 

U+ = U+ (2.8c) 
m e 

(b) Evanescent Wave  (a ^ 0,   ß = 0): 

P1  = 0 (2.9a) 

Q,   = -     (U+ - U+) (2.9b) 
lame 
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U = U (2.9c) 
m   e 

(c)  Complex Wave (a / 0, ß / 0): 

P1 = 0 (2.10a) 

Q1 = 0 (2.10b) 

U+ = U+ (2.10c) 
m   e 

if = U~ (2.10d) 
m   e 

These results are the same as those derived by Chorney, who used a 

short circuit termination (R = 1) as a starting point of his formulation. 

However, they are included here for the sake of completeness and also because 

we shall have occasions to refer to them later when we discuss the periodic 

structures. 

The physical interpretation of these energy relations appears in 

Chorney's work and we shall not discuss much of that aspect in this work. 

Only a few brief comments will be made here in connection with the most 

interesting case, that of the complex waves.  Equation (2.10) shows that 

the complex Poynting vector for a complex wave is Identically zero, hence 

the law of conservation of energy is not violated.  Prior to the derivation 

of these relations, it was widely believed, that such waves do not exist 

in lossless uniform guides as they will violate the principle of conservation 

of energy.  An interesting observation in connection with case (c) is that 

although it corresponds to the most general type of propagation constant, 

the energy relations are rather special, because E and Q are both identi- 

cally zero in this case.  Another remark concerning this case is that the 

presence of an anisotropic medium is not necessary for the existence of 

such waves, although one may get this impression from the generalized nature 

of the medium which is considered in the formulation. 



III.    Periodic Structures 

We shall now consider the extension of the energy relationships 

derived above to the case of periodic structures. 

Consider an Infinitely long,   lossless periodic structure with Its 

axis along the z direction.     Following Floquet's theorem,   the fields  In 

such a structure may be expressed as a sum of Infinite number of space 

harmonics.    Thus,  one may write 

oo 

-r z   ^ "J~d~ * 
F = e  0       2,    Vx>y) e (3,1) 

n=-oo 

where F represents either the electric or magnetic field vector, F Is 

the complex propagation constant (F s a + Jß ), and d is the period. o       o 

The transverse and longitudinal electric and magnetic field components 

in a periodic structure, with an arbitrary termination, may be expressed 

as follows: 

Z-F z      F z 
Stn(x,y) (e " -Rn e n ) (3.2a) 

n 

„A        -Fz      Fz 
Ht =  A Htn(x'y) (e n + Rn 

e D > (3.2b) 
n 

_-, -F z      F z 
E, =  / E (x*y> (e n + RM e n ) (3.2c) z   4^     zn n 

-Fz     Fz 
I c 
n 

H =  y H (x,y) (e n - R e n ) (3.2d) 
z   ä .     zn 

n 

where 

r . a + j (ß* *"! ) . r ♦ j 2£ (3.2e) n o   a     o     a 

The R are complex scalars and may be identified as the reflection coefficients 

of the nth harmonic referred to the plane at z = 0.  Let the characteristics 



of the lossless homogeneous medium filling the structure be described 

by the tensors £ and fl.  These tensors are assumed to be of the same form 

as in (2.1). 

Now substitute the field expressions in (3.2) into the energy integral 

(2.3).  Take the volume v as the region enclosed by the waveguide walls, 

and the two cross-sectional surfaces S  and S , which are located at integral 

number of periods apart.  That is, if S  be located at z then S  is to be 

located at z + pd, p being an integer.  This particular choice of the surfaces 

S  and S  is obvious from the periodic nature of the fields. 

Let 
00 00 

P = P, + jQ, =  / /   (pnm + P ) 1     1    ^ ^-.     nm    nn' 
m=-x) n=-jc 
m^n 

(3.3a) 

-I P  = ^   1    (^ x fl* )  .  z da (3.3b) 
nm   2    I      tn   tm 

Sl 

Notice that the above definitions are analogous to those in (2.5a) except 

now one has an infinite sum of integrals representing P and Q which in- 

clude the self as well as mutual terms, P.. and P  (j^k).  The pseudo- 
J J      J k 

energy terms may also be defined in a manner similar to (2.5b) through 

(2.5g).  Upon simplification it is possible to derive the energy relations 

exactly analogous to (2.6a) and (2.6b). 

Without repeating the details of the derivations, which are quite 

similar to the uniform waveguide case, we shall simply state the important 

conclusions based on the above relations: 

a)  For a propagating wave (a = 0, ß ^ 0, Vd), the imaginary part 

of the complex Poynting vector integrated over the cross-section is identi- 

cally zero, i.e., Q = 0. 
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b)  In the case of an arbitrary complex wave on the structure 

(a / 0, ß jo,   ff/d), the integrated value of the complex Poynting vector 

is identically zero, i.e., P = 0 and Q = 0. 

An important point in connection with the above results is that they 

hold true for the aggregate of the self and mutual terms, i.e., P. and Q , 

rather than for the individual terms P .  In fact, it has not been possible 
nm 

to derive explicit relations  for the  individual  terms P    . 
nm 

The special cases for the evanescent (a y 0, ß = 0), and the filter 

cutoff waves (a y 0, ß = IT/d), occur in the region of transition on the 

k-ß diagram where ß goes from propagating to the complex wave region. 
o 

However, P and Q still turn out to be zero at these points, as these may 

be considered as the limiting cases of the complex waves. 

IV.  Open Waveguides 

So far we have restricted our discussion to closed waveguides - uniform 

or periodic.  It is interesting to pose the question whether there exist 

energy relations similar to the ones derived above which are applicable to 

open waveguides.  This topic will now be discussed briefly. 

The principal difference between open and closed waveguides, is of 

course, the boundary condition at infinity.  In deriving the energy relations 

for the closed waveguides, use was made of the fact that the tangential 

electric field was zero on the walla, and hence, there was no contribution 

of the Poynting vector on the wall surfaces.  Clearly, the corresponding 

contribution from the surface at infinity will not be zero, in general, 

for a given open structure. 

However, for a surface wave type of mode supported by an open structure, 

the fields have an exponential decay in the transverse direction, and the 

analysis presented above for the closed structures is equally well appli- 
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cable here.     The surfaces  S,   and S   .   which   are  transverse cross-sections, 
1     2' ' 

are now necessarily of infinite extent.  The main difference between the 

analysis of the uniform and periodic guides is the choice of the relative 

locations of S with respect to S .  In the uniform case the locations of 

S  and S are arbitrary, whereas in the periodic case they must be separated 

by a distance which is an integral multiple of the period d. 

An even more interesting frequency region in the open guide case is 

where the structure supports complex waves.  Again, if in this region of 

frequency the transverse wave number is such that there is an exponential 

decay at infinity, the analysis given in the previous section continues 

to be valid.  Complex waves that decay in the transverse direction are of 

backward type*.  Open structures supporting such waves have been found 

useful in the design of log-periodic antennas, and the energy relations 

derived here provide considerable insight into the radiation mechanism of 

such antennas. 

In order to discuss this matter further it will be useful to study 

the detailed behavior of the complex Poynting vector for some open wave- 

guides. This task is undertakei» in the following section. 

V.  Power Plots 

In this section we present some graphs of the complex Poynting vector, 

(E x H ) . ^, plotted as a function of the distance along the transverse 

direction.  These calculations are for the sinusoidally modulated reactance 

4 
surface (SMRS) studied by Oliner and Hessel , and for the sheath heiix, 

5 
the detailed analysis of which appears in Watkins . The field expressions 

♦For a detailed discussion on backward and forward complex waves see 
3 

Tamir and Oliner , 
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used In the calculation are reproduced here from the above two references 

and the Interested reader is referred to them for further details. 

(a)  Sinusoidally Modulated Reactance Surface (SMRS). 

The electric and magnetic fields on SMRS may be expressed as follows: 

-F z  °o   I       -J  z   -T x 
Hy= e 0    Z   7^   e     "      e   " (5,la) 

n=-<» 

-T z ^-^      I       -j  Z   -T x 

n 

where r=Q+jß,r=r+ ^^ , T = -j Jj? + k2 o o'  n   o    a 

,2V 
The surface reactance is of the form X(z) = X [1 + M cos (— s)]  . 

S B 

The difference equation satisfied by the coefficients I ls: 

n 

I , + D I +1  , = 0, n = 0, + 1, + 2, ... (5.2a) n+1   n n   n-1   '     *_.»_> 

where 

0 Tn 
D = -  [1 1 (5.2b) n  M  l   X W £ J \».«»/ 

s 

The characteristic equation for the propagation constant ^1 is 

obtained by setting the determinant of the infinite set of equations in 

(5.2a) equal to zero. This characteristic equation was solved for real 

and complex values of F ,  since complete information about F required 

for the computation to be carried out, was not available from the reference 

cited above.  Figure 2 shows two k-ß diagrams, for X* s 1 and 5, and M = 0.4. 

X* = X /A/UTC IS the normalized reactance of the surface. The values of 
s   s 

r   were computed to the accuracy of three significant figures. The coefficients 

I corresponding to a given F were next calculated from (5.2a), and I was 

normalized to 1. With this data on hand, it is a straightforward procedure 

to compute the local Poynting vector,y  ( = [E x H ] • z), as a function 
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of  the transverse dimension x.     Using  (5.1),    /      may be expressed as 

QO       00 * 

SP^i V     r ' *      -(T +T ) X 
Sp -     \ I I* r e  "■ n (5.3) J /     /     m n m 

Z » / ,-J 
m=-oo n=-<x> 

to Figure 3 exhibits the real part of fas  a function of the transverse 

dimension x, for the k-ß combination determined by the point A marked on 

Figure 2.  Since T   here is purely imaginary the structure supports a propa- 

gating wave at this frequency.  P; the total Poynting vector is represented 

by the area under the curve. This area turns out to be finite and positive 

as of course would be expected in this case. 

Figure 4e shows the real and imaginary parts oi f^vs,   the transverse 

dimension x.  The propagation constant for this case is complex, as indi- 

cated by the point B in Figure 2.  The integrated value of the complex 

Poynting vector is found to be zero, a result in agreement with the preceding 

theoretical derivations.  It is interesting to note that the real part of 

the local Poynting vector is positive near the surface but rapidly becomes 

negative, and remains so, as one moves away from the structure. 

Power computations have also been carried out for several values of 

the propagation constant in different regions of the k-[3 diagram for SMRS. 

These plots are presented in Figures 4b, 4c, and 4d.  Some general 

cownents based on these results will be advanced in the following section. 

(b)  Sheath Helix 

Consider a sheath helix with a pitch angle 4i, pitch p and radius a. 

The transverse electric and magnetic fields for the inside region of the 

helix (0 < r < a) are given by (for details see Watkins [op, cit.]): 
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,1.    &c      .Vr)-^   D,    1(T,)1     .-V"* 

,»        fjEf    ci  (Tr)-Jai   D      .'(T,]     ,-»,J»* 
<t>        \12r        n n T        n      n       J 

o- I-- . -    iv    T  iir.\ i       -J«Jn4> (5.4c) H_ =      -r-      c  I   (rr)  +      T    D_   I  Or) e      •*'^ 

(5.4«) 

(5.4b) 

(5.4d) 

T .    -j      r2   +k
2 

Similar expressions are obtained for the outside region a < r < "o , 

when C J   D ,   and  I    are replaced by A ,  B    and K ,   respectively.     Here 
n      n n n      n n 

I    and K    are modified Beasel  functions,  and the coefficients A .  B .  C 
n n n'    n*     n 

and D    are determinable  from the solution of the characteristic matrix n 

once the propagation constant   Fis known. 

The determinantal equation for the shesth helix reada  (see Watkins) 

i t 

I  (ra) K  (ra) ,22 2 
n , . (TV t jnla cot 402 {. .. 

I  (ra) K  (Ta)      "        ..2 2 2 2        2 " ""^ 
n n      ' k a T a    cot    ¥ 

The real and complex aolutions of this equation have recently been obtained 

by Klock.      A portion of the k-ß diagram la reproduced here in Figure 5. 
-16 

The azimuthal variation was assumed to be of the form e   ^in his calculation. 

The amplitude coefficients A .  B .  C    and 0    may be calculated for 
n      n'    n n 

given  Tby going back to the characteriatic matrix.    The complex Poyntlng 

vector in the z direction may then be obtained from the following: 

^ <■ <■. ■»■,>■*■■, ■:> ■ ■, ■; "••' 

Numerical computations have been carried out for the local Poyntlng 

vector Pz* a function of the radial dimension r.    A few typical results 
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•represented  in Figures 6,  7» through 7f where the product  r. 7    rather than 

J  itself is plotted.     This is convenient because the integrated value of 

the Poynting vector over the cross section is directly obtainable  from the 

arc«  under the curve. 

Figure 6  shows a  plot  of   the  real  part of   r.y    vs.   (r/a).    This  case 

corresponds  to  a value of  F indicated by  the  point A   in  Figure 5,   which  is 

the  case of  a  propagating wave.     The  real  Poynting  vector   is  found  to  be 

positive throughout, 

FigureTa shows  the  real  and  imaginary  parts of  r, _/"   corresponding 

to  the complex  propagation constant   F associated with   the  point  B  in  Figure 

5,     It  is  again  found,   that   the  complex Poynting vector   integrated over 

the  cross-section  is   identically  zero.     It   is   interesting  to  note  that  the 

real  part of  the  local  Poynting vector  is  positive  inside  the helix while 

it  becomes   negative outside. 

In  the   following  section we   shall   present   a  brief   discussion of   the 

calculated  power  plots  for  the open waveguides, 

VI.     Discussion of  Power  Plots 

We shall   now present  some observations  based on  the  power plots of 

the  two open waveguides  discussed   in  the  last  sectioa.     Note  first of  all 

that  in the  pass-band region,   where  F is purely imaginary,   the  integrated 

Poynting  vector  is real  and  positive.     However,   locally  the  real  part of 

A* {  =1/     )   may change  from positive  to negative  as  one  moves  along  the 

transverse  dimension.     Although,   this  may  not  be obvious  at  first,   a   little 

thought  will  show that  this   is  due  to  the  fact   that  the  power carried by 

various  space  harmonics,   i.e.,   the  P       terms,   as well  as  the cross-flux r ' ' mm ' 

terms    P change considerably  as  one moves  along  the  transverse  direction, 
nm 
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This happens,   for  instance,  at the frequency in the neighborhood of the 

point C in SMRS   (see Figure 2),  where  the -I   space harmonic has the  least 

decay in the transverse  direction as compared to the others.     By and large, 

the 0 and -1 harmonics  are the two major contributors  to the  infinite sum 

representation forj.    The  terms  involving  n = 0 are predominant   near 

the reactance surface of SMRS making  the  net   local  power positive  there. 

As one moves higher up  in frequency and reaches a region corresponding to 

say,  point B,   (Figure 2),   the  integratec^^,   is zero.    The n - 0 terms are 

still predominant  near  the surface.     However,   the contributions of   the terms 

involving the -1  space  harmonic  now become  larger as well  as more spread 

out  in the transverse  direction.     This   is  because the amplitude of  the -1 

space harmonic has  increased and  its  decay  factor in the transverse direction 

has decreased in comparison to that at  point  C  (Figure 2). 

The power picture  in the complex wave region leads  to an  interesting 

and useful  interpretation of  the radiation phenomenon in open waveguides. 

Suppose  that  an open waveguide is excited by a source  located close  to its 

surface.     It  is well  known that  the near fields due  to such a  source can 

often be described with  good approximation by a complex wave  supported by 

the structure.     The corresponding field setup is such that  the energy 

extracted from the source travels  in the  positive direction via  fields 

closely attached  to the  surface,   and is  continually radiated  into space by 

fields having a  transverse distribution resembling the -1  space harmonic 

of  the complex wave mode.    The radiation is  thus  in the backward direction 

and  the antenna  is  said  to be backfire.     The  performance of  such an antenna 

operating in this  mode has a close resemblance to the two-line contradirec- 

tlonal coupler. 

An interesting observation may be made for the stop-band region,   say 

point D (Figure 2),  where the propagation constant  is also complex,   but 

the  power picture  is radically different  from that  at point B. 
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Although the power  plot  for point D is  not  shown here,   the real and 

imaginary parts of   J  are   identically  zero  everywhere.     Because of   this, 

it   is  not  possible  to  achieve  efficient excitation or radiation  from a 

waveguide operating  in  this   frequency  region. 

The  sheath helix,   which   is  the other open waveguide structure   for 

which  the power calculations  have been made,   is  slightly different   from 

the SMRS.    This  is  because   its  translation  period  is   infinitesimally  small, 

and hence,   the  field  expressions  appropriate   to  the  sheath helix  consist 

of  a  single traveling wave  instead of  an  infinite  number of  space  harmonics. 

In  this  respect  it  is  similar  to a  uniform waveguide  rather  than a   periodically 

loaded one. 

One consequence of   the  above  property of   the  sheath helix  is   that  the 

stop-band (a / 0,   ß =  '"'/d)   is  absent   in  its   k-ß diagram.     Except   for  this 

region,   however,   the  power  picture  in  the  sheath  helix   is  somewhat   similar 

to  that   in SMRS when one considers  the  frequency  regions which correspond 

to each other. 

One important difference in the physical structure of the helix from 

the SMRS is, of course, that in the former there are two distinct regions 

separated by the helix  surface.    Thus,   in  the  complex wave  region of   the 

o helix,   say at  point  B  (see  Figure 5),   one  notes   from Figure  7 that      J      is 

positive  inside and  negative outside.     However,   it   is  not  necessarily  true 

for all  complex wave  regions   that  the  power  bo  negative   in the entire out- 

side region.     For example,   in  the  neighborhood of   the  point C  (see  Figure 

5),   the  power  is  positive  near the  surface,   but  quickly changes  to   negative 

values  as one moves out  along  the  radial  direction.     Also,   at  point  A  (see 

Figure  5),   the  power  is   positive  throughout;   this  behavior  is  similar to 

the SMRS. 
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The behavior of the tape helix, which Is a more practical radiating 

structure, may be predicted quite well from the knowledge of the sheath 

helix power plots. The main difference between the two is, of course, the 

presence of the space harmonics in the tape version which are absent in 

the sheath.  However, the power plots are expected to be quite similar. 

The comments which were made earlier In connection with the open 

waveguides as radiators and the distribution of the power carried by the 

various space harmonics are generally valid in the case of the tape helix. 

It is well known that the b^filar tape helix in the push-pull mode is a 

good backfire antenna in the neighborhood of the onset of the complex wave 

region. 

It has not been possible thus far to find a similar interpretation 

of the behavior of an open structure supporting a forward complex wave . 

In the first place, these waves do not have a decay in the transverse 

direction, hence they do not satisfy the energy relations derived above. 

Some modifications in the apprcach are clearly necessary when dealing with 

such waves, but a satisfactory solution to this problem has yet to be found. 

We shall close this section with one further comment.  An interesting 

question which has frequently been posed is whether or not dk/dß may be 

related to the direction of power flow in the complex wave region as it 

is possible to do when a = 0. Since it has been shown that P = 0 for complex 

waves, the above question is not really very meaningful.  However, a study 

of the power plots in various regions shows that the slope of the k-ß plot 

may sometimes be related to the direction of power flow in certain local 

regions. This is particularly true for the region of transition from the 

- 

♦For the properties of  forward complex waves  refer to Tamlr  and Oliner 
(loc.  clt). 
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propagating to complex waves. At the onset of the complex wave region, 

and in its neighborhood, the power picture chanpes only slowly if the 

k-p diagram is also smooth there. Thus it is possible to predict the behavior 

of the local Poynting vector in the vicinity of the transition region from 

the knowledge of the nature of the plots just prior to entering the complex 

wave region. However, no general method of continuing the prediction has 

been found so far. 
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